樂山一中蔡貴書
1. 教材分析
1¬-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)
(1) 本課內(nèi)容是高中數(shù)學(xué)第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容
(2) 包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式
1-2教材所處地位、作用和前后聯(lián)系
本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。
1-5教學(xué)目標(biāo)及確定依據(jù)
教學(xué)目標(biāo)
(1) 掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點(diǎn)線距離和線線距離。
(2) 培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3) 認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。
(4) 滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據(jù):
中華人民共和國教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(2002年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(2004年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
。1) 重點(diǎn):點(diǎn)到直線的距離公式
確定依據(jù):由本節(jié)在教材中的地位確定
。2) 難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)
確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。
分析“嘗試性題組”解題思路可突破難點(diǎn)
。3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。
確定依據(jù):
(1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。
2-2教具:多媒體和黑板等傳統(tǒng)教具
3. 學(xué)法
3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。
一句話:還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
。1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。
。2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。
(3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問題數(shù)學(xué)化,是每個(gè)追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過程,錘煉意志,培養(yǎng)能力。
3-3學(xué)具:直尺、三角板
3. 教學(xué)程序
教學(xué)環(huán)節(jié) |
教學(xué)過程 |
設(shè)計(jì)意圖 | |
創(chuàng) 設(shè) 情 景 ( 三 分 鐘 ) |
喚 醒 舊 知 |
師:“距離產(chǎn)生美”。昨天我與**同學(xué)相隔遙遠(yuǎn),彼此毫無感覺,今天的零距離蕩漾著親切,卻少了想象的空間,看來把握恰當(dāng)?shù)木嚯x才能感知美好。 (1) 你有什么辦法能得到我(A點(diǎn))和**同學(xué)(B點(diǎn))之間的距離? 生: 思考,回答。 (2) “形缺數(shù)時(shí)難入微”。(1)中的各種辦法中哪個(gè)較好?還有沒有更好的辦法。 生: 比較,回答。 教學(xué)機(jī)智: 針對(duì)學(xué)生的回答,老師進(jìn)行引導(dǎo)。老師進(jìn)行鋪墊、遞進(jìn),或深入、拓展。 師: 由此看來,兩點(diǎn)間距離公式成為解決該問題的首選。讓我們一鼓作氣,繼續(xù)努力。 |
提問一:還原學(xué)生的數(shù)學(xué)現(xiàn)實(shí),誘發(fā)動(dòng)機(jī),樂于參與。 提問二:既可點(diǎn)燃數(shù)形結(jié)合的思想,又可喚醒兩點(diǎn)間距離公式。 根據(jù)認(rèn)識(shí)發(fā)展理論,學(xué)生認(rèn)知結(jié)構(gòu)的發(fā)展是在其認(rèn)識(shí)的過程中伴隨同化和順應(yīng)的認(rèn)知結(jié)構(gòu)不斷再建構(gòu)的過程,達(dá)到以舊悟新的目的。(1)(2)兩問的解決為后繼知識(shí)作好了鋪墊。 |
提 出 問 題 |
師: “點(diǎn)動(dòng)成線”。當(dāng)點(diǎn)B運(yùn)動(dòng)形成一直線 時(shí),此時(shí)又怎樣求點(diǎn)A到直線 的距離呢?生: 定性回答 |
點(diǎn)明課題,使學(xué)生明確學(xué)習(xí)目標(biāo)。 創(chuàng)設(shè)“不憤不啟,不悱不發(fā)”的學(xué)習(xí)情景。 | |
教學(xué)環(huán)節(jié) |
教學(xué)過程 |
設(shè)計(jì)意圖 | |
探 究 問 題( 十 二 分 鐘 ) |
練習(xí)
比較
發(fā)現(xiàn)
歸納
討論
驗(yàn)證 |
多媒體,出示材料 生: 練習(xí): “嘗試性題組” A到 的距離為d(1) A(2,4), :x = 3, d=_____(2) A(2,4), :y = 3,d=_____(3) A(2,4), :x – y = 0,d=_____ |
嘗試性題組告訴學(xué)生下手不難,還負(fù)責(zé)特例檢驗(yàn),從而增強(qiáng)學(xué)生參與的信心。 |
請三個(gè)同學(xué)上黑板板演 師: 請這三位同學(xué)分別說說自己的解題思路。 生: 回答 教學(xué)機(jī)智:應(yīng)沉淀為三種思路:一,根據(jù)定義轉(zhuǎn)化為定點(diǎn)到垂足的距離;二,利用等積法轉(zhuǎn)化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。 視回答的情況,老師進(jìn)行肯定、修正或補(bǔ)充提問:“還有其他不同的思路嗎”。 |
說解題思路,一是讓學(xué)生清晰有條理的表達(dá)自己的思考過程,二是其求解過程提示了證明的途徑(根據(jù)定義或畫坐標(biāo)線時(shí)正好交出一個(gè)直角三角形) | ||
師:很好,剛才我們解決了定點(diǎn)到特殊直線的距離問題,那么,點(diǎn)P(x0,y0)到一般直線 :Ax+By+C=0(A,B≠0)的距離又怎樣求?教學(xué)機(jī)智:如學(xué)生反應(yīng)不大,則補(bǔ)充提問:上面三個(gè)題的解題思路對(duì)這個(gè)問題有啟示嗎? 生:方案一:根據(jù)定義 方案二:根據(jù)等積法 方案三: ...... |
設(shè)置此問,一是使學(xué)生的認(rèn)知由特殊向一般轉(zhuǎn)化,發(fā)現(xiàn)可能的方法,二是讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索和創(chuàng)造,感受數(shù)學(xué)的生機(jī)和樂趣。 | ||
師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。 |
“師生共作”體現(xiàn)新型師生觀 | ||
教學(xué)環(huán)節(jié) |
教學(xué)過程 |
設(shè)計(jì)意圖 | |
問題解決 ( 十 分 鐘 ) |
由學(xué)生推證點(diǎn)到直線的距離公式 |
培養(yǎng)學(xué)生嚴(yán)謹(jǐn),周密的邏輯推理能力,得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性,形成科學(xué)的態(tài)度。 在推證的過程中,通過克服困難的經(jīng)歷,以及獲得成功的體驗(yàn),鍛煉意志,增強(qiáng)信心。 | |
問題延伸 (八 分 鐘) |
師: 當(dāng)點(diǎn)A也運(yùn)動(dòng)形成直線 ',且 '// 時(shí),又怎樣求這兩線的距離?生:計(jì)算得線線距離公式 師:板書點(diǎn)到直線的距離公式,兩平行線間距離公式 |
“沒有新知識(shí),新知識(shí)均是舊知識(shí)的組合”,創(chuàng)設(shè)此問可發(fā)揮學(xué)生的創(chuàng)造性,增加學(xué)生的成就感。 | |
反思小結(jié) 經(jīng)驗(yàn)共享 (六 分 鐘) |
師: 通過以上的學(xué)習(xí),你有哪些收獲?(知識(shí),能力,情感)。有哪些疑問?誰能答這些疑問? 生: 討論,回答 |
對(duì)本節(jié)課用到的技能,數(shù)學(xué)思維方法等進(jìn)行小結(jié),使學(xué)生對(duì)本節(jié)知識(shí)有一個(gè)整體的認(rèn)識(shí) 共同進(jìn)步,各取所長 | |
練習(xí) (五 分 鐘) |
P53 練習(xí) 1, 2,3 |
熟練的用公式來求點(diǎn)線距離和線線距離。 | |
再度延伸 (一 分 鐘) |
探索其他推導(dǎo)方法 |
“帶著問題進(jìn)課堂,帶著更多的問題出課堂”,讓學(xué)生真正學(xué)會(huì)學(xué)習(xí)。 |
4. 教學(xué)評(píng)價(jià)
學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:
(1) 整理知識(shí)結(jié)構(gòu)
(2) 總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法
(3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因
(4) 談?wù)勀銓?duì)老師教法的建議和要求。
作用:
(1) 通過反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過程。
(2) 報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。
(3) 及時(shí)了解學(xué)生學(xué)習(xí)過程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。
5. 板書設(shè)計(jì)
(略)
6. 教學(xué)的反思總結(jié)
心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。