11.2.1三角形全等的判定(SSS)
一、教學(xué)內(nèi)容
本節(jié)課主要內(nèi)容是探索三角形全等的條件(SSS),及利用全等三角形進(jìn)行證明.
二、教學(xué)目標(biāo)
(一)知識與技能
了解三角形的穩(wěn)定性,會應(yīng)用“邊邊邊”判定兩個三角形全等.
(二)過程與方法
經(jīng)歷探索“邊邊邊”判定全等三角形的過程,解決簡單的問題.
(三)情感、態(tài)度與價值觀
培養(yǎng)有條理的思考和表達(dá)能力,形成良好的合作意識.
三、重、難點與關(guān)鍵
(一)重點:掌握“邊邊邊”判定兩個三角形全等的方法.
(二)難點:理解證明的基本過程,學(xué)會綜合分析法.
(三)關(guān)鍵:掌握圖形特征,尋找適合條件的兩個三角形.
四、教具準(zhǔn)備
一塊形狀如圖1所示的硬紙片,直尺,圓規(guī).
五、教學(xué)方法
采用“操作──實驗”的教學(xué)方法,讓學(xué)生親自動手,形成直觀形象.
六、教學(xué)過程
(一)設(shè)疑求解,操作感知
【教師活動】(出示教具)
問題提出:一塊三角形的玻璃損壞后,只剩下如圖2所示的殘片,你對圖中的殘片作哪些測量,就可以割取符合規(guī)格的三角形玻璃,與同伴交流.
【學(xué)生活動】觀察,思考,回答教師的問題.方法如下:可以將圖1的玻璃碎片放在一塊紙板上,然后用直尺和鉛筆或水筆畫出一塊完整的三角形.如圖2,剪下模板就可去割玻璃了.
【理論認(rèn)知】
如果△ABC≌△A′B′C′,那么它們的對應(yīng)邊相等,對應(yīng)角相等.反之,如果△ABC與△A′B′C′滿足三條邊對應(yīng)相等,三個角對應(yīng)相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.
這六個條件,就能保證△ABC≌△A′B′C′,從剛才的實踐我們可以發(fā)現(xiàn):只要兩個三角形三條對應(yīng)邊相等,就可以保證這兩塊三角形全等.
信不信?
【作圖驗證】(用直尺和圓規(guī))
先任意畫出一個△ABC,再畫一個△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把畫出的△A′B′C′剪下來,放在△ABC上,它們能完全重合嗎?(即全等嗎)
【學(xué)生活動】拿出直尺和圓規(guī)按上面的要求作圖,并驗證.(如課本圖11.2-2所示)
畫一個△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:
1.畫線段取B′C′=BC;
2.分別以B′、C′為圓心,線段AB、AC為半徑畫弧,兩弧交于點A′;
3.連接線段A′B′、A′C′.
【教師活動】巡視、指導(dǎo),引入課題:“上述的生活實例和尺規(guī)作圖的結(jié)果反映了什么規(guī)律?”
【學(xué)生活動】在思考、實踐的基礎(chǔ)上可以歸納出下面判定兩個三角形全等的定理.
(1)判定方法:三邊對應(yīng)相等的兩個三角形全等(簡寫成“邊邊邊”或“SSS”).
(2)判斷兩個三角形全等的推理過程,叫做證明三角形全等.
【評析】通過學(xué)生全過程的畫圖、觀察、比較、交流等,逐步探索出最后的結(jié)論──邊邊邊,在這個過程中,學(xué)生不僅得到了兩個三角形全等的條件,同時增強(qiáng)了數(shù)學(xué)體驗.
(二)范例點擊,應(yīng)用所學(xué)
【例1】如課本圖11.2─3所示,△ABC是一個鋼架,AB=AC,AD是連接點A與BC中點D的支架,求證△ABD≌△ACD.(教師板書)
【教師活動】分析例1,分析:要證明△ABD≌△ACD,可看這兩個三角形的三條邊是否對應(yīng)相等.
證明:∵D是BC的中點,
∴BD=CD
在△ABD和△ACD中
∴△ABD≌△ACD(SSS).
【評析】符號“∵”表示“因為”,“∴”表示“所以”;從例1可以看出,證明是由題設(shè)(已知)出發(fā),經(jīng)過一步步的推理,最后推出結(jié)論(求證)正確的過程.書寫中注意對應(yīng)頂點要寫在同一個位置上,哪個三角形先寫,哪個三角形的邊就先寫.
(三)實踐應(yīng)用,合作學(xué)習(xí)
【問題思考】
已知AC=FE,BC=DE,點A、D、B、F在直線上,AD=FB(如圖所示),要用“邊邊邊”證明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,還應(yīng)該有什么條件?怎樣才能得到這個條件?
【教師活動】提出問題,巡視、引導(dǎo)學(xué)生,并請學(xué)生說說自己的想法.
【學(xué)生活動】先獨立思考后,再發(fā)言:“還應(yīng)該有AB=FD,只要AD=FB兩邊都加上DB即可得到AB=FD.”
【教學(xué)形式】先獨立思考,再合作交流,師生互動.
(四)隨堂練習(xí),鞏固深化
課本P8練習(xí).
【探研時空】
如圖所示,AB=DF,AC=DE,BE=CF,BC與EF相等嗎?你能找到一對全等三角形嗎?說明你的理由.(BC=EF,△ABC≌△DFE)
(五)課堂總結(jié),發(fā)展?jié)撃?/P>
1.全等三角形性質(zhì)是什么?
2.正確地判斷出全等三角形的對應(yīng)邊、對應(yīng)角,利用全等三角形處理問題的基礎(chǔ),你是怎樣掌握判斷對應(yīng)邊、對應(yīng)角的方法?
3.“邊邊邊”判定法告訴我們什么呢?(答:只要一個三角形三邊長度確定了,則這個三角形的形狀大小就完全確定了,這就是三角形的穩(wěn)定性)
(六)布置作業(yè),專題突破
1.課本P15習(xí)題11.2第1,2題.
2.選用課時作業(yè)設(shè)計.
(七)板書設(shè)計
把黑板平均分成三份,左邊部分板書“邊邊邊”判定法,中間部分板書例題,右邊部分板書練習(xí).
(八)疑難解析
證明中的每一步推理都要有根據(jù),不能“想當(dāng)然”,這些根據(jù),可以是已知條件,也可以是定義、公理、已學(xué)過的重要結(jié)論.