欧美成人免费一区在线播放,欧美日韩国产在线,战长沙电视剧免费观看完整版不卡,高清免费毛片

文武教師招聘網(wǎng)
首頁(yè) 浙江教師 福建教師 江蘇教師 廣東教師 江西教師 安徽教師 北京教師 上海教師 天津教師 湖南教師 湖北教師 河南教師
河北教師 海南教師 重慶教師 貴州教師 遼寧教師 吉林教師 山西教師 廣西教師 云南教師 陜西教師 甘肅教師 青海教師 四川教師
山東教師 內(nèi)蒙古教師 黑龍江教師 寧夏教師 新疆教師 西藏教師 教師面試 說(shuō)課稿 教案 考試大綱 教師招聘試題 特崗教師 教師資格考試
杭州教師  廣州教師  長(zhǎng)沙教師  南京教師  福州教師  南昌教師  教師考試大綱  教師資格大綱  政治資料  地理資料
您現(xiàn)在的位置:首頁(yè) >> 教師招聘考試大綱 >> 內(nèi)容

四川省宜賓市公開初中數(shù)學(xué)教師招聘專業(yè)科目考試大綱(試行)

時(shí)間:2013-5-6 16:52:51 點(diǎn)擊:

宜賓市公開招聘初中數(shù)學(xué)教師專業(yè)科目

考試大綱(試行)

一、考試性質(zhì)

宜賓市初中新任教師公開招聘考試是符合招聘條件的考生參加的全市統(tǒng)一的選拔性考試。考試結(jié)果將作為宜賓市初中新任教師公開招聘面試的依據(jù)。招聘考試應(yīng)從教師應(yīng)有的專業(yè)素質(zhì)和教育教學(xué)能力等方面進(jìn)行全面考核,擇優(yōu)錄取。招聘考試應(yīng)具有較高的信度、效度,必要的區(qū)分度和適當(dāng)?shù)碾y度。

二、考試目標(biāo)與要求

1.著重考查考生的數(shù)學(xué)專業(yè)基礎(chǔ)知識(shí)、中學(xué)數(shù)學(xué)課程與教學(xué)論知識(shí)掌握情況,考查運(yùn)用基本理論、知識(shí)與方法分析和解決有關(guān)中學(xué)數(shù)學(xué)教學(xué)問(wèn)題的能力;是否具備從事中學(xué)數(shù)學(xué)教育、教學(xué)工作所必需的基本教學(xué)技能和持續(xù)發(fā)展自身專業(yè)素養(yǎng)的基本能力。

2.數(shù)學(xué)專業(yè)基礎(chǔ)知識(shí)的要求分為了解、理解、掌握三個(gè)層次。

⑴了解:要求對(duì)所列知識(shí)的含義及其背景有初步的、感性的認(rèn)識(shí),知道這一知識(shí)內(nèi)容是什么,并能在有關(guān)的問(wèn)題中識(shí)別它。

⑵理解:要求對(duì)所列知識(shí)內(nèi)容有較深刻的認(rèn)識(shí),能夠解釋、舉例或變形、推斷,并能利用知識(shí)解決有關(guān)問(wèn)題。

⑶掌握:要求系統(tǒng)地掌握知識(shí)的內(nèi)在聯(lián)系,能運(yùn)用所列知識(shí)分析和解決較為復(fù)雜的或綜合性的問(wèn)題。

3.基本能力包括思維能力、運(yùn)算能力、空間想象能力、實(shí)踐能力、創(chuàng)新能力。

⑴思維能力:能對(duì)問(wèn)題或資料進(jìn)行觀察、比較、分析、綜合、抽象與概括;能用類比、歸納和演繹進(jìn)行推理;能合乎邏輯地、準(zhǔn)確地進(jìn)行表述。

⑵運(yùn)算能力:能根據(jù)法則、公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理;能根據(jù)問(wèn)題的條件和目標(biāo),尋找與設(shè)計(jì)合理、簡(jiǎn)捷的運(yùn)算途徑;能根據(jù)要求對(duì)數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算。

⑶空間想象能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析圖形元素及其相互關(guān)系;能對(duì)圖形進(jìn)行分解、組合與變換;能運(yùn)用圖形與圖表等手段形象地揭示問(wèn)題的本質(zhì)。

⑷實(shí)踐能力:能綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決問(wèn)題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中簡(jiǎn)單的數(shù)學(xué)問(wèn)題;能理解對(duì)問(wèn)題陳述的材料,并對(duì)所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,建立數(shù)學(xué)模型;能運(yùn)用相關(guān)的數(shù)學(xué)方法解決問(wèn)題并加以驗(yàn)證;能運(yùn)用數(shù)學(xué)語(yǔ)言正確地表述和說(shuō)明。

⑸創(chuàng)新能力:能選擇有效的教學(xué)方法和手段,對(duì)教學(xué)信息、情境進(jìn)行分析;能綜合運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)、思想和方法,進(jìn)行獨(dú)立的思考、探索和研究,提出中學(xué)數(shù)學(xué)教學(xué)中的新問(wèn)題,找到解決問(wèn)題的途徑、方法和手段,創(chuàng)造性地解決教學(xué)問(wèn)題。

三、考試范圍與要求

 (一)數(shù)學(xué)專業(yè)基礎(chǔ)知識(shí)

1.集合與常用邏輯用語(yǔ)

考試內(nèi)容:

集合。命題。常用邏輯用語(yǔ)。

考試要求:

 (1)了解子集、交集、并集、補(bǔ)集有關(guān)術(shù)語(yǔ)和符號(hào)表示。理解集合之間的運(yùn)算法則,會(huì)求集合的交、并、補(bǔ)運(yùn)算。

 (2)了解命題、充要條件等概念的意義;掌握四種命題之間的關(guān)系,以及充分、必要、充要條件的判斷。

 (3)了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義,理解全稱量詞與存在量詞的意義,能正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定。

2.函數(shù)

考試內(nèi)容:

映射。函數(shù)的概念及其表示。函數(shù)的有界性、單調(diào)性、奇偶性、周期性;境醯群瘮(shù)及其圖像。有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)。對(duì)數(shù)的運(yùn)算性質(zhì)。三角函數(shù)的概念。同角三角函數(shù)的基本關(guān)系式。三角函數(shù)的誘導(dǎo)公式。兩角和與差、二倍角的正弦、余弦、正切公式。初等函數(shù)。

考試要求:

 (1)了解映射的概念。掌握函數(shù)的基本性質(zhì)(定義域、值域、有界性、單調(diào)性、奇偶性、周期性)。了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。理解基本初等函數(shù)的圖形與性質(zhì)之間的關(guān)系,掌握基本初等函數(shù)的性質(zhì)以及應(yīng)用。

 (2)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)。理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì)。

 (3)了解角、弧度制、任意角的三角函數(shù)、三角函數(shù)線等概念。掌握同角三角函數(shù)的基本關(guān)系式、誘導(dǎo)公式,掌握兩角和與差、二倍角的正弦、余弦、正切公式,掌握二倍角等三角公式的內(nèi)在聯(lián)系以及公式在求值、化簡(jiǎn)、證明中的應(yīng)用。掌握正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像、性質(zhì)以及圖像之間的變換規(guī)律,掌握正弦定理、余弦定理在解斜三角形中的應(yīng)用。

(4)了解初等函數(shù)的概念。能夠運(yùn)用初等函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問(wèn)題。

3.不等式、數(shù)列與極限

考試內(nèi)容:

不等式。不等式的性質(zhì)。不等式的證明。不等式的解法。含絕對(duì)值不等式;静坏仁。數(shù)列的概念。等差數(shù)列與等比數(shù)列。數(shù)列的前n項(xiàng)和。極限的概念。極限的運(yùn)算。

考試要求:

 (1)掌握不等式的基本性質(zhì),會(huì)用分析法、綜合法、比較法證明簡(jiǎn)單不等式,掌握簡(jiǎn)單不等式的解法,理解含絕對(duì)值不等式及其解法。能利用基本不等式解決實(shí)際問(wèn)題。

 (2)了解方程與不等式的同解原理。掌握一元代數(shù)方程(特殊類型)的解法,掌握初等超越方程的解法。

 (3)理解算術(shù)平均與幾何平均不等式、貝努利不等式、柯西不等式以及應(yīng)用。掌握凸函數(shù)定理與排序定理在證明不等式中的應(yīng)用。

(4)掌握等差數(shù)列、等比數(shù)列的概念、通項(xiàng)公式以及前n項(xiàng)和公式的推導(dǎo)以及應(yīng)用。

 (5)掌握線性遞歸數(shù)列的概念以及通項(xiàng)公式的求法。

 (6)了解極限的概念。理解數(shù)列極限、函數(shù)極限的概念、意義以及運(yùn)算規(guī)則,掌握數(shù)列極限、函數(shù)極限的計(jì)算方法。掌握連續(xù)等基本概念。

4.算法初步

考試內(nèi)容:

算法;舅惴ㄕZ(yǔ)句。

考試要求:

 (1)了解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),并能夠?qū)懗鼋鉀Q具體問(wèn)題的程序框圖。

 (2)理解幾種基本算法語(yǔ)句,體會(huì)算法的基本思想。

5.排列組合與二項(xiàng)式定理

考試內(nèi)容:

排列。組合。二項(xiàng)式定理。

考試要求:

 (1)了解排列、組合、排列數(shù)、組合數(shù)等概念。

 (2)理解分類計(jì)數(shù)原理和分步計(jì)數(shù)原理,掌握常見排列或組合問(wèn)題的解決方法。

 (3)掌握相異元素允許重復(fù)的排列與組合、不盡相異元素的排列與組合問(wèn)題的解法。理解抽屜原理以及應(yīng)用。

 (4)掌握二項(xiàng)式定理以及二項(xiàng)展開式的性質(zhì)以及應(yīng)用。

6.向量與復(fù)數(shù)

考試內(nèi)容:

向量的概念。向量的運(yùn)算。向量的運(yùn)用。復(fù)數(shù)的概念。復(fù)數(shù)的運(yùn)算。

考試要求:

 (1)了解平面向量的意義、幾何表示以及向量運(yùn)算的法則。掌握平面向量的加法與減法、實(shí)數(shù)與向量的積、平面向量的坐標(biāo)表示、平面向量的數(shù)量積、平面兩點(diǎn)間的距離。

 (2)了解空間向量的概念,了解空間向量的基本定理及其意義;掌握空間向量的線性運(yùn)算及其坐標(biāo)表示;掌握空間向量的數(shù)量積及其坐標(biāo)表示。理解直線的方向向量與平面的法向量。能用向量方法證明有關(guān)直線和平面位置關(guān)系的一些定理;能用向量方法解決直線與直線、直線與平面、平面與平面的夾角的計(jì)算問(wèn)題,了解向量方法在研究幾何問(wèn)題中的應(yīng)用。

 (3)了解數(shù)系擴(kuò)充的必要性,理解復(fù)數(shù)的概念、復(fù)數(shù)的運(yùn)算,掌握復(fù)數(shù)的加、減、乘、除運(yùn)算性質(zhì)與規(guī)則。

7.推理與證明

考試內(nèi)容:

推理的概念。直接證明和間接證明。反證法。數(shù)學(xué)歸納法。

考試要求:

 (1)了解合情推理的含義,能利用歸納和類比等進(jìn)行簡(jiǎn)單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用;了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理;了解合情推理和演繹推理之間的聯(lián)系和差異。

 (2)了解直接證明的兩種基本方法--分析法和綜合法;了解分析法和綜合法的思考過(guò)程、特點(diǎn)。了解間接證明的一種基本方法──反證法;了解反證法的思考過(guò)程、特點(diǎn)。了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題。

8.導(dǎo)數(shù)與積分

考試內(nèi)容:

導(dǎo)數(shù)的概念。函數(shù)的和、差、積、商的求導(dǎo)法則。復(fù)合函數(shù)的求導(dǎo)法則。二階導(dǎo)數(shù)。隱函數(shù)的導(dǎo)數(shù)。函數(shù)的微分。導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用。不定積分的概念、性質(zhì)。定積分的概念、性質(zhì)。牛頓一萊布尼茨公式。二重積分的概念與性質(zhì)。

考試要求:

 (1)了解導(dǎo)數(shù)概念的實(shí)際背景,理解導(dǎo)數(shù)的幾何意義。

 (2)掌握基本導(dǎo)數(shù)公式,能利用基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)的導(dǎo)數(shù),能求隱函數(shù)的導(dǎo)數(shù)。了解二階導(dǎo)數(shù)的定義及求法。

 (3)能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值;會(huì)求閉區(qū)間上連續(xù)函數(shù)的最大值、最小值;會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題。

 (4)了解不定積分的定義、性質(zhì)。掌握基本積分表。會(huì)用不定積分的性質(zhì)和基本積分公式求簡(jiǎn)單函數(shù)的不定積分。

 (5)理解定積分、二重積分的定義、性質(zhì)、幾何意義。掌握牛頓一萊布尼茨公式。會(huì)用定積分的性質(zhì)和牛頓一萊布尼茨公式求簡(jiǎn)單函數(shù)的定積分。理解用定積分、二重積分求曲邊梯形的面積、曲頂柱體的體積的思想方法。

 (6)了解微積分基本定理的含義。了解微積分的發(fā)展歷史,理解微積分的基本思想,能夠從數(shù)學(xué)分析的觀點(diǎn)、原理與方法,處理解決一些初等數(shù)學(xué)中無(wú)法深究的問(wèn)題。

9.立體幾何

考試內(nèi)容:

簡(jiǎn)單幾何體的結(jié)構(gòu)。三視圖。直觀圖。平面的基本性質(zhì)?臻g兩直線、兩平面、直線與平面的位置關(guān)系。多面體。柱、錐、臺(tái)、球。

考試要求:

 (1)認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu)。能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二側(cè)法畫出它們的直觀圖。

 (2)了解球、棱柱、棱錐、臺(tái)、球的表面積和體積的計(jì)算公式。

 (3)了解空間兩直線、兩平面、直線與平面的幾種位置關(guān)系;了解可以作為推理依據(jù)的公理和定理,并能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡(jiǎn)單命題(延伸平面幾何的相關(guān)命題)。

10.解析幾何

考試內(nèi)容:

直線的斜率。直線的方程。圓的方程。曲線與方程。橢圓、雙曲線、拋物線?臻g直線與平面。

考試要求:

 (1)理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線的斜率公式。掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程。

 (2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式。能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系。

 (3)掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程。理解橢圓、雙曲線、拋物線之間的內(nèi)在聯(lián)系。掌握橢圓、雙曲線、拋物線的定義以及標(biāo)準(zhǔn)方程、幾何性質(zhì)。

 (4)了解曲線與方程的概念。理解坐標(biāo)法解決問(wèn)題的基本思想,理解直線與圓的位置關(guān)系,掌握直線與橢圓、雙曲線、拋物線的位置關(guān)系。

 (5)理解空間曲線與方程的概念。掌握空間直線、空間平面的方程。

(6)了解極坐標(biāo)與參數(shù)方程的概念,會(huì)用極坐標(biāo)法解決解析幾何中的簡(jiǎn)單問(wèn)題。掌握直線、圓、橢圓、雙曲線、拋物線的參數(shù)方程,并會(huì)利用參數(shù)方程解決解析幾何中的簡(jiǎn)單問(wèn)題。

11.概率與統(tǒng)計(jì)

考試內(nèi)容:

隨機(jī)抽樣。抽樣方法。總體分布的估計(jì)。正態(tài)分布。獨(dú)立性檢驗(yàn)。線性回歸。隨機(jī)事件的概率。等可能性事件的概率。互斥事件有一個(gè)發(fā)生的概率。相互獨(dú)立事件同時(shí)發(fā)生的概率。獨(dú)立重復(fù)試驗(yàn)。離散型隨機(jī)變量的分布列。離散型隨機(jī)變量的期望值和方差。

考試要求:

 (1)理解隨機(jī)抽樣的必要性和重要性。會(huì)用簡(jiǎn)單隨機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法。

 (2)了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義。了解兩個(gè)互斥事件的概率加法公式。

 (3)理解古典概型及其概率計(jì)算公式,會(huì)計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率。了解幾何概型的意義。

 (4)理解取有限個(gè)值的離散型隨機(jī)變量的概念,理解取有限個(gè)值的離散型隨機(jī)變量的均值、方差及其分布列的概念,會(huì)求取有限個(gè)值的離散型隨機(jī)變量的分布列,能計(jì)算簡(jiǎn)單離散型隨機(jī)變量的均值、方差,并能解決一些實(shí)際問(wèn)題。

 (5)了解條件概率和兩個(gè)事件相互獨(dú)立的概念,理解次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

 (6)了解分布的意義和作用,會(huì)列頻率分布表,會(huì)畫頻率分布直方圖、頻率折線圖、莖葉圖,了解它們各自的特點(diǎn)。會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征,理解用樣本估計(jì)總體的思想。

 (7)利用實(shí)際問(wèn)題的直方圖,了解正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義。

 (8)理解超幾何分布及其導(dǎo)出過(guò)程,并能進(jìn)行簡(jiǎn)單的應(yīng)用。

 (9)了解獨(dú)立性檢驗(yàn)(只要求2×2列聯(lián)表)的基本思想、方法及其簡(jiǎn)單應(yīng)用。了解回歸的基本思想、方法及其簡(jiǎn)單應(yīng)用。了解一些常見的統(tǒng)計(jì)方法,并能應(yīng)用這些方法解釋一些實(shí)際問(wèn)題。

12.矩陣與行列式

考試內(nèi)容:

行列式。矩陣。

考試要求:

 (1)了解線性代數(shù)的基本內(nèi)容,掌握行列式、矩陣、向量空間的有關(guān)概念與意義。理解行列式的性質(zhì)、矩陣的初等變換以及向量間的線性關(guān)系。

 (2)掌握一般線性方程組解的結(jié)構(gòu)與解法。

 (二)中學(xué)數(shù)學(xué)課程與教學(xué)論內(nèi)容

1.中學(xué)數(shù)學(xué)課程的相關(guān)內(nèi)容!镀胀ǜ咧袛(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》、《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》(初中數(shù)學(xué))中的課程性質(zhì)、基本理念、課程目標(biāo)、教學(xué)建議、評(píng)價(jià)建議等。

2.中學(xué)數(shù)學(xué)教學(xué)原則、教學(xué)過(guò)程、常用數(shù)學(xué)教學(xué)模式與方法、數(shù)學(xué)概念教學(xué)、數(shù)學(xué)命題與推理教學(xué)、數(shù)學(xué)思想方法的教學(xué)、教學(xué)手段應(yīng)用、基本教學(xué)技能、教學(xué)案例的設(shè)計(jì)和評(píng)析、教學(xué)評(píng)價(jià)、試題評(píng)價(jià)等。

四、考試形式

1.答卷方式:閉卷、筆試。

2.考試時(shí)間:120分鐘。

3.試卷分值:100分。

五、試卷結(jié)構(gòu)

1.主要題型:選擇題或填空題40%左右、解答題60%左右,其中選擇題是四選一型的單項(xiàng)選擇題;填空題只要求直接填寫結(jié)果,不必寫出計(jì)算過(guò)程或推證過(guò)程;解答題包括計(jì)算題、證明題、論述題和案例分析題等,解答應(yīng)寫出文字說(shuō)明、演算步驟或推證過(guò)程。

2.內(nèi)容比例:數(shù)學(xué)學(xué)科專業(yè)基礎(chǔ)主干知識(shí)約占85%,中學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)與中學(xué)教材教法、教學(xué)技能占15%。

3.試題難易比例:容易題約占30%,中等難度題約占50%,較難題約占20%。

 來(lái)源:網(wǎng)絡(luò)
相關(guān)文章
最新更新文章
  • 文武教師招聘網(wǎng)(www.lzzsqm.com) © 2013 版權(quán)所有 All Rights Reserved.
  • 站長(zhǎng)聯(lián)系QQ:799752985 浙ICP備11036874號(hào)-1
  • Powered by 文武教師招聘網(wǎng)