課題: 棱錐的概念和性質(zhì)(第一課時說課設(shè)計)
今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個方面對本課的教學(xué)設(shè)計進行說明。
一、說教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識,同時培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達爾文說:“最有價值的知識是關(guān)于方法和能力的知識”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。
2. 教學(xué)目標確定:
(1)能力訓(xùn)練要求
①使學(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點、高的概念。
②使學(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標
①培養(yǎng)學(xué)生善于通過觀察分析實物形狀到歸納其性質(zhì)的能力。
②提高學(xué)生對事物的感性認識到理性認識的能力。
③培養(yǎng)學(xué)生“理論源于實踐,用于實踐”的觀點。
3. 教學(xué)重點、難點確定:
重 點:1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點:培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。
在教學(xué)中根據(jù)高中生心理特點和教學(xué)進度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。
2、教學(xué)手段:
根據(jù)《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強,思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。
三、說學(xué)法:
這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認知結(jié)構(gòu)。
四、 學(xué)程序:
[復(fù)習(xí)引入新課]
1.棱柱的性質(zhì):(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面是平行四邊形
2.幾個重要的四棱柱:平行六面體、直平行六面體、長方體、正方體
思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側(cè)面、側(cè)棱、頂點、高、對角面的概念
(2).棱錐的表示方法、分類
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
①各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
②棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;
棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
②正棱錐的側(cè)面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結(jié)合圖形,進一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本
引申:
①觀察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點?
(可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)
②若分別假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請試通過三角形得出以上各元素間的關(guān)系式。
(課后思考題)
[例題分析]
例1.若一個正棱錐每一個側(cè)面的頂角都是600,則這個棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
(答案:D)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長和底面邊長均為a,求:
(1)側(cè)面與底面所成角α的余弦(2)相鄰兩個側(cè)面所成角β的余弦
﹙解析及圖略﹚
[課堂練習(xí)]
1、 知一個正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結(jié)]
一:棱錐的基本概念及表示、分類
二:棱錐的性質(zhì)
1. 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
(1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
(2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
②正棱錐的側(cè)面與底面所成的二面角相等;
③正棱錐中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習(xí)題9.8 : 2、 4
2:課時訓(xùn)練:訓(xùn)練一