勾股定理說課稿
課題:勾股定理
內容:教材分析、教法學法分析、教學過程設計、設計說明
一、 教材分析
。ㄒ唬┙滩乃幍牡匚
這節(jié)課是華師大九年制義務教育課程標準實驗教科書八年級總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)根據(jù)課程標準,本課的教學目標是:
1、能說出勾股定理的內容。
2、會初步運用勾股定理進行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
(三)本課的教學重點:探索勾股定理
本課的教學難點:以直角三角形為邊的正方形面積的計算。
二、教法與學法分析
教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
三、 教學過程設計
。ㄒ唬⿺(shù)學史導入
以畢達哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。
。ǘ⿲嶒灢僮
1、投影課本圖的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關系,從而學生通過正方形面積之間的關系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長單位為5,12,13,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
(三)歸納驗證
1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關系的研究,讓學生用數(shù)學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結論的正確性和廣泛性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育和數(shù)學文化熏陶。
(四)問題解決
讓學生解決生活中的實際問題,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數(shù)學是與實際生活緊密相連的。
。ㄎ澹┱n堂小結
主要通過學生回憶本節(jié)課所學內容,從內容、應用、數(shù)學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。
。┎贾米鳂I(yè)
習題19.2(1-5)
有興趣的同學可以查找另外的證明方法,寫出1-2種出來
四、 設計說明
1、本節(jié)課是公式課,根據(jù)學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的探索和研究,得出結論。這種一般化的思想方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發(fā)展也有一定的作用。
3、關于練習的設計,除兩個實際問題和課本習題以外,還讓有興趣的同學可以查找另外的證明方法,寫出1-2種出來
4、本課小結從內容,應用,數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學數(shù)學、用數(shù)學的意識是有很大的裨益的。